EASE

AR L E OF €ONTENIS

Introduction to PLEASE
Overview and Fundamental Concepts
PLEASE Monitor
System Timer
Alpha Display Table
Hexidecimal Display Table
Interpreter
Page Zero
- Other MEMORY Location Information
PLEASE Functions - See PLEASE Function Summary

Subroutines:
DIRADR
INDADR - CLRDSP - FILDSP
Connsp
STORE

Program Modules:
#1 - SCLOCK - DCLOCK - STIMER - DTIMER
NOTICE - BILBRD - DAFFY
#2 - Shooting Stars - Hilo
#3 - TIPSY Intoxication Tester
#4 - Decimal/Hexidecimal Conversions
#5 - Add/Subtract - Reaction Time Tester

The PLEASE Library

The Last Word

PLEASE Function Summary
Some Important Numbers

Second Edition

Back Cover
Back Cover

LISTINGS

Introduction to PTEASE

I have been working with minicomputers and microcomputers for nearly eight
years., During this time I have seen scme pretty horrible examples of how
NOT to design small computer software packages. Often, concepts and tech-
niques which might be appropriate to a large computer system are thought-
lessly applied to a small system, with predictably bad results. I have
developed a number of programming philesophies and techniques which are
designed specifically for the types of small machines that are becoming
available to the computer hobbyist and small businessman.

PLEASE is a very small package which embodies several of the more important
concepts. It has a tiny monitor which takes care of the basic I/0 functionms,
timing functions, and scheduling. It has a set of functions to perform the
major tasks., These functions are combined through the use of a simple
interpreter which calls up the functions and passes the necessary parameters
to them. Programs are written as a series of functions. Since each func-
tion does a major piece of work, a program may consist of only a few func-
tions and can be readily "assembled" by hand., For example, the PLEASE
Command Decoder which permits the user to select which game or demo to run
‘from the keyboard is four functions, encoded in a total of 16 bytes.

I am very impressed with the capabilities of the KIM-1 Microcomputer System.
Aside from the excruciatingly slow cassette dump/load, it is remarkably well
thought out. However, I must admit that after getting my own KIM-1 and

doing the single example in the manual I was more than a bit frustrated

that there wasn't anything else to do without a great deal of effort on my
part. 1 could only impress my wife and friends slightly by adding 2 + 3

and getting 5! I decided, therefore, to create a small games and demos
package that could run on the basic KiM-1, without any additional peripherals
such as teletype or special display devices. The result is PLEASE,

PLEASE has been developed entirely on a basic KiM-1. All of the assembly
has been done by hand, All of the object code has been entered through the
_keyboard. Debugging has been via the KIM-1 Monitor. The resulting package
demonstrates what can be dome on a basic system. It also does suffer in
‘some respects though. Certain changes I would have liked to make became
just too much effort via hand assembly.

I welcome any suggestions, comments, or whatever. I have had fum developing
PLEASE and hope you will enjoy playing with it,

Kb M G

Robert M, Tripp

Contents of the PLEASE Instructions and PLEASE Object Cassette Tape are
Copyright 1976 by The COMPUTERIST, P.0. Box 3, S Chelmsford MA 01824,

Prices for the PLEASE Package are:

OBJECT CASSETTE TAPE and Operating Instructions: $6.00
SOURCE LISTINGS and Instructions for Writing Code: $6.00
Complete PLEASE Package Including Everything: $10.00

These may be ordered from the above address, For information: 617/256-3649~

Overview and Fundamental Concepts

The approach that PLEASE uses to create a program is probably quite
different from the traditional approaches you have encountered before.
Its keywords are simplicity and modularity. Many approaches talk about
simplicity and modularity, but by the time you get to really use them
they require macro assemblers, linking loaders, compilers, and many other
"aids" that often lead to very inefficient code that is very difficult

to understand and/or debug. The basic element of PLEASE is the Function.
A complex set of tasks can be performed by a fairly limited set of simple
tasks, if the correct set of simple functions is selected and if there is
a simple way to combine the independent functions into a useful whole,

In PLEASE a set of fourteen (14) basic functions has been defined and
implemented, and a routine called the Interpreter is used to combine
these functions into useful entities called Programs. Certain programs
have requirements that are quite unique, and PLEASE provides for special
Functions to be written for these, ‘A Program is written in PLEASE as a
series of Steps., Each Step consists of the name of a Function and its
asgociated parameters. In a sense, PLEASE programs are written in a
form of microcode, Each Step is 32 bits of information: 8 bits of
Function name followed by 3 8-bit units of parameter information. A
PLEASE Step to get decimal input from the keypad, store the results in
consecutive locations starting with a location named Buffer, and display
the digits as they are input on the KIM-1 LED's from the leftmost pos-
ition (@) to the rightmost position (5) is:

DECIN BUFFER [/] 5

To have the digits appear in position 5 and then be shifted to the left
as in a calculator, the Step would be:

DECIN BUFFER 5 [

This '"microcoding' permits each PLEASE Function to perform in a number of
different ways. The richness of the Functions will become apparent in
the sections which describe the individual functions.

Before examining the functions in detail, there are a couple of other
parts of PLEASE that should be understood. These are the Monitor, the
Timer, the Interpreter, and the various memory locations which have been
allocated for particular uses.

Monitor. The Monitor performs a number of basic services. It is respons-
ible for maintaining a one millisecond main loop, for accepting in con-
junction with the ROM characters from the keypad, for refreshing the LED
display, and for branching off to the system Timer and application code.
The Monitor is general purpose and can be used entirely independently of
the remainder of PLEASE,

Timer. The Timer is based on the one millisecond loop of the Monitor.
During each pass through the Monitor, a call is made to the Timer, The
Timer updates an eight character timer which can count from 0.001 to
99,999,999 seconds. Every thousand times through the loop, which equals
one second, the timer updates a six character clock which counts from

w3 =

00:00:00 to 23:59:59 as a 24 hour clock. The maintenance of the timer
and clock is independent of the remainder of PLEASE, although there are
several PLEASE programs which set or display the results of the timer
and clock, The contents of the Timer are used by a number of programs
to provide pseudo random numbers.

Interpreter. The Interpreter is the heart of the PLEASE technique, but
is itself very simple., It has three basic purposes., First, it converts
the Step Number to be executed into an absolute memory address and then
bumps the Step Number to the next Step, just as a Program Counter does,
Second, it moves the four bytes which consist of the Function Code and

_the three Parameter bytes from their original location to a standard
location in the Page Zero making them easily accessible to the Functions.
Finally, it looks up the address of the Function via the Function Code
and the Function Table, and then transfers control to the Function. In
this way the independent PLEASE Functions are tied together into a mean-
ingful whole.

Memory Locations. PLEASE has very carefully partitioned the limited KIM-1
memory. The Monitor, which never changes, is always resident, and which
may be used without ‘the rest of PLEASE, is placed '"out-of~the-way' in the
extra RAM locations of the 6530 chips. These locations start at 1780 and
go to l7E6. The remaining RAM locations 17E7 through 17FF are used by

the KIM-1 Monitor, The Timer starts at location 200, the Interpreter at
300. The remainder of the locations in 200 through 3FF are used for the
fourteen basic PLEASE Functions and some subroutines which are used by

the Functions, This section of memory is also never modified by the

basic PLEASE programs. Page One contains the Function Table in 100 through
11F, Special Function Table in 120 through 12F, Special Functions in 130
through 1EF, and the Stack in 1FO through 1FF. The PLEASE Programs start
at location 00, Page Zero is used for many purposes as described later,
The memory ordering has been made to be least volatile in high memory,
most volatile in low memory. Overlays always start at location 00.

Functions. The fourteen basic PLEASE Functions may be broken down into
a few categories:

Input. The only PLEASE Input device is the KIM-1 Keypad. There
are three input modes: Alphabetic, Hexidecimal, and Decimal.

Output. The only PLEASE Output device is the KIM-1 Display. There
are three output modes: Alphabetic, Hexidecimal, and
Decimal,

Time. A timer routine provides for delays of up to 25 seconds in
one-tenth of a second increments.

Pack, A pair of functions provide £«
characters per byte or to be ur

onditional, and
itional on a table

Branch, There are three basic forms of
conditional on an input charac
lookup value,

Fill, There is a function to fill/clear memory locations.

Match, There are two functions which permit comparing strings of
data and branching on the result.

Special Functions. The basic fourteen PLEASE Functions can not, of
course, do everything, Special Functions may be added whenever the basic
functions either could not do the job, or would be too inefficient,
Examples of Special Functions include: MASTER - the evaluator for the
Daffy (Mastermind) Game; MESAGE - the heart of the Notice and Billboard
Programs; and, START and SHOT - initializer and evaluator for Shooting
Stars,

Programs. The current PLEASE package consists of about fifteen programs.
These vary in complexity and size., SCLOCK (set clock) is only two basic
PLEASE Functions. HiLo (Number Guessing Game) is nineteen basic PLEASE
Functions. Daffy (Mastermind Game) is thirteen basic Functions and one
special Function. And so forth.

Subroutines. There are about six subroutines in PLEASE, These are an
odd collection of chunks of code that were useful to have around and were
shared by one or more independent functions, but which were not powerful
enough to warrant being treated as Functions.

The only way to understand PLEASE is to use it, Write your own programs
entirely in PLEASE Functions, When a special need arises, write your
own Special Function. Have fun. Enjoy.

NOTE: A word of Caution. Since this was all done by hand, it is quite
possible that there may be one or more errors in the typing of the
Programs and/or Source Listings. All code on the cassette was entered
from the listings, so that the Object of the listings is probably okay.
If you see a discrepancy between the Object and the Operation, the Object
is probably right and the Operation wrong.

Bl I I I R R A

OO ok e %k ok ok ok % %
EO e I S S

The KIM-1 is made by MOS TECHNOLOGY, INC. Its list price as of December
1976 is $245,00 + 4,50 postage and handling. This is a fully assembled
and tested unit and includes three manuals: KIM-1 User Manual, Programming
Manual and Hardware Manual. You must provide your own power supply which
has +5vdec @ 1,2 amps and +12vdc @ .2 amps. Other modules available from
the same source are KIM-2 a 4K RAM, KIM-3 an 8K RAM, a mother board, and
several ROM programs including a KIMath math package and an Editor/Assem-
bler. Address is: 950 Rittenhouse Road, Norristown PA 19401

Phone: 215/666-7950

D 0 D e S I T T
P O O S S S AT L L A

IMPORTANT NOTICE: If you did not purchase your copy of PLEASE
directly from The COMPUTERIST, then please send us your Name,
Address, and Cassette Tape Number. This will enable us to keep
you informed of any updates, new products, or corrections that
occur in the future.

The COMPUTERIST, P.0. Box 3, S Chelmsford, MA 01824

PLEASE Monitor

EXINIT initializes the pointer to the first application subroutine and
initializes the location CHAR to indicate no valid input character has
been received.

1780 A9 00 EXINIT 1DA #DCDLO DCDLO = Application Low
1782 8 cC 17 STA EXAPLO Address to Exec Transfer
1785 A9 03 1DA #DCDHI DCDHI = Application High
1787 8D CD 17 STA EXAPHI Address to Exec Transfer
178A A9 20 LDA #20 20 is used to indicate
178¢ 85 DB STA CHAR NO character input

EXLOOP controls a one millisecond loop which is required to permit the
Display to be properly refreshed. KEYIN uses the KIM-1 ROM routines to
input a character from the Keypad, and then performs '"debouncing' of the
Keypad. DSPLAY causes the next character in a six character Page Zero
buffer to be displayed on the LED Display for one millisecond, Other
routines are accessed via subroutine calls, TIMER updates a series of
counters which provide decimal count from 1 millisecond up to 99,999.999
seconds. It also maintains a 24 hour clock, providing hours, minutes
and seconds,

178E A9 7C EXLOOP 1LDA #7¢C Set Millisecond Timer

1790 8D 45 17 STA 1745 (Actually 992 microseconds)
1793 20 88 1E KEYIN JSR INITS Setup for Keyboard Input
1796 20 6A 1F JSR GETKEY Get Keyboard Input if any
1799 C9 14 CMP #KEYMAX Was there a Key Pressed ?
179B 30 04 BMI KEYIN2 Yes, a Key was Pressed
179D 85 DE STA KEYTST No, so reset debounce flag
179F DO OA BNE DSPLAY Unconditional Branch

17A1 A6 DE KEYIN2 LDX KEYTST Test debounce flag.

17A3 FO 06 BEQ DSPLAY Branch if not a new char.
17A5 85 DB STA CHAR Save new character

17A7 A9 00 LDA #00 Clear debounce flag

17A9 85 DE STA KEYTST

17AB A4 D9 DSPLAY 1DY DSPPOS Current Display Pointer
17AD 98 TYA Calculate Select Line

17AE 0A ASL

17AF 69 08 ADC #8

17B1 8D 42 17 STA 1742 Select Display Position
17B4 A9 T7F LDA #7F Select All Output Lines
1786 8D 41 17 STA 1741

17B9 Bl CE IDA (DSPLO),Y Get Display Character from
17BB 8D 40 17 STA 1740 Display Buffer and Output
17BE 88 DEY Decrement Position Pointer
17BF 10 02 BPL DSPLY2 Okay if Positive

17C1 A0 05 DY #5 Else, Reset to Maximum
17¢3 84 D9 DSPLY2 STY DSPPOS Save Pointer for Next Loop

Other routines are now invoked via subroutine jumps. TIMER is an
optional routine. The next slot is available for any other routine

that is to be included in every EXLOOP. Currently it is not being

used and is therefore replaced by three NOPs. The actual application
that is being run is accessed via the JSR APPL where the address of

the application routine has been filled in at run time. It is initially
set to address 0300 by the EXINIT code. It can be simply changed by
the application by use of the EXSET routine explained below.

17¢5 20 00 02 JSR TIMER Go to TIMER subroutine
17C8 EA EA EA (JSR 77777 NOPs can be changed
17CB 20 00 03 JSR APPL This goes off to Application

EXWAIT waits for the interval timer to finish its 992 microsecond count.
It then restarts the EXLOOP for the next millisecond loop. The testing
and restart takes approximately 8 microseconds bringing the total time
up to approximately 1000 microseconds or one millisecond.

17CE AD 45 17 EXWAIT 1IDA 1745 Pickup Current Interval
17D1 29 80 AND #80 Timer Count and Test for
17D3 €9 80 CMP #80 Downcount Complete

17D5 DO F7 BNE EXWAIT Keep Waiting Until Done
17D7 FO B5 BEQ EXLOOP When Done, Restart EXLOOP

EXSET is provided to make it easy for an application to change the
location to be accessed on the next application call via the JSR APPL.
The application code places a JSR EXSET immediately in front of the
instruction which is to start the next application processing. EXSET
picks up this address and places it into the JSR APPL instruction and
then returns to EXWAIT by making a subroutine return RTS.

17D9 68 EXSET PLA Pull Address of Next

17DA 8D CC 17 STA EXAPLO Application Instruction
17D EE CC 17 INC EXAPLO and Save and Correct

17E0 68 PLA ’ Pull Page Address of Next
17E1 8 CD 17 STA EXAPHI Appl. Inst and Save it.
17E4 60 RTS Return to EXLOOP at EXWAIT

EXAMPLE: Within an application there is a need to wait for 10 milli-
seconds. After JSR EXSET pointers set to call HERE on next JSR APPL,

1DA #10. Set Counter = 10.
STA COUNT
WAIT JSR EXSET Return to EXLOOP with
HERE DEC COUNT HERE as NEXT ADDRESS
BNE WAIT Keep Waiting Until BEQ

s 7 s

System Timer

On each pass through the PLEASE Monitor EXLOOP, a one millisecond loop,
a subroutine call is made to a TIMER subroutine. This routine provides
two services., First, it updates an eight character millisecond based
counter which has a range of 0.0 to 99,999.999 seconds and which is used
by many programs to generate pseudo random numbers, is used by the react-
ion time program to calculate reaction time, and so forth. Second, it
updates a six character 24 hour clock to provide time in hours, minutes
and seconds, This subroutine is written to be relocatable anywhere in
memory. For PLEASE, it is assembled at location 200. The eight char-
acter timer data is stored in four bytes starting at location C@. The
six character clock data is stored in three bytes starting at location
C4. Location C7 is used as a counter.

200 F8 TIMER SED Calculations done in Decimal Mode
201 A2 03 ILDX #3 Setup Counter for Timer

203 18 TIMER1 CLC Clear Carry Bit

204 B5 CO LDA THOUS,X Add 1 to Current Timer Value

206 69 01 ADC #1

208 95 CO STA THOUS,X

20A 90 2D BCC TDONE All done if no Carry

20C EO 03 CPX #3 Test Carry from Millisecond

20E DO 26 BNE TIMER2 Skip Clock Update unless Millisecond
210 €6 C7 DEC ONESEC Decrement a Ten * 1/10 second counter
212 DO 22 BNE TIMER2 Skip Clock Update unless 10 counts

If one second has expired since the last update of the Clock, then the
Clock is updated. First the seconds byte is incremented and tested for
its limit (60 seconds). If not equal to its limit a test is performed
to test the hour byte limit., If the hour byte is not equal to its
limit (24 hours), then the €lock portion of the Timer subroutine is
complete., If the seconds byte is equal to its limit, then it is reset
to zero and the minutes byte is incremented. It is tested in exactly
the same manner (actually the same code) as the seconds for its limit.
After the seconds, minutes, and hours bytes have been updated, the

Ten * 1/10 second counter is reset and the X index register is reset,

214 18 CLOCK CLC

215 B5 C3 LDA MILLI,X Get Byte Using Index

217 69 01 ADC #1 Increment Byte

219 C9 60 CMP #60 Test Second or Minute Limit
21B DO 07 BNE HTEST Not Limit., Test Hour Limit
21D A9 00 LDA #0 Reset Second or Minute to Zero
21F 95 C3 STA MILLI,X Save Modified Byte

221 CA DEX Decrement Index

222 10 FO BPL CLOCK Unconditional Branch

-8 -

224 EO 01 HTEST CPX #1 Is this the Hour Byte?

226 DO 06 BNE CDONE If not, then Clock is Done

228 C9 24 CMP #24 Test Hour Limit

22A DO 02 BNE CDONE If not Limit, then Clock is Done
22C A9 00 1DA #0 If Limit, Reset to Zero

22E 95 C3 CDONE STA MILLI,X Store Modified Value

230 A2 03 LDX #3 Restore Index Value

232 A9 0A LDA #A Reset Ten * 1/10 Counter

234 85 C7 STA ONESEC

236 CA TIMER2 DEX Decrement Index

237 10 cA BPL TIMER1 If Index Positive, Continue Updates
239 D8 TDONE CLD All Done. Clear Decimal Mode
23A 60 RTS Subroutine Return

These updated Timer and Clock values are now ready to be used for the
various purposes of PLEASE and can be displayed on the six character
display.

B I R R R R R R I I R R R
Alpha Display Table Hexidecimal Display Table
Loc Value Key Character Loc Value Key Character
3F0 77 ¢ A 1FE7 3F] (']

3F1 7C 1 b 1IFE8 06 1 1

3F2 58 2 c IFE9 5B 2 2

3F3 5E 3 d 1FEA 4F 3 3

3F4 79 4 E 1FEB 66 4 4

3F5 71 5 F 1FEC 6D 5 5

3F6 76 6 H 1IFED 7D 6 6

3F7 30 7 I 1FEE 07 7 7

3F8 38 8 L 1IFEF 7F 8 8
3F9 54 9 n 1FF0 6F 9 9
3FA 5C A o 1FF1 7 A A
3FB 73 B B 1FF2 7C B b

3FC 50 C b 1FF3 39 C C

3FD 6D D S 1FF4 5E D d

3FE 78 E t 1FF5 79 E E
3FF 6E F Y 1FF6 71 F F

Note: The Hexidecimal Display Table is located in the KIM-1 ROM. The
table actually has bit 80 on in each byte, that is location 1FE7 actually
contains a BF which is 3F + 80. Only those bits which have associated
display segments are listed in this table.

= 9

Interpreter

A program written in PLEASE consists of a series of Functions and their
associated Parameters. It is the responsibility of the Interpreter to:
maintain a pointer to the next Step to be executed; convert the Step
Number to the actual Step Location in memory; move the Function Code and
the Parameter Values to standard Page Zero locations; lookup the actual
memory address of the Function in the Function Table; and, transfer
control to the selected Function. The Interpreter is the "'glue" that
holds the independent Functions together to form a Program.

A portion of the Monitor initialization sequence invoked when the system
is started at location 1780 sets up a pointer in the Monitor so that the
first call to the Application code comes to the Interpreter at location
DECODE. This causes the Step Number STEPNO to be set to zero. This

will cause the PLEASE Function at STEPNO @ or Location @@@#@ to be the
first Function executed. 1In all of the current PLEASE programs this is
the start of the Command Decoder which occupies four Steps. If a PLEASE
module is written which only contains a single program and therefore does
not require a Command Decoder, then the first Function could be the start
of the program itself., The entry point SETSTP is used to permit certain
Functions to change the order of execution, that is cause a branch, by
entering with the new next step value in the Accumulator. The entry
point NXTSTP is the normal entry point where no modification of the Step
Number is required. The subroutine jump to EXSET guarantees that the
Monitor will gain control at least once during each Step, permitting the
Keyboard to be tested for input, the Display toc be refreshed, and the
System Clock and Timer to be updated. On return from EXSET the Step
Number is converted into the actual Step Location in memory. Valid Step
Numbers range from @@ to 27 and address locations @@@@ to @@9C.

300 A9 00 DECODE LDA #00

302 85 B7 SETSTP STA STEPNO
304 20 D9 17 NXTSTP JSR EXSET

307 A5 B7 LDA STEPNO
309 0A ASL

304 0A ASL

30B 85 B8 STA STEPLO

STEPLO now points to the first byte of the four byte Step. These four
bytes are transferred to standard locations in Page Zero. The data is
moved in reverse order: PARAM3, PARAM2, PARAM1, and PARAM@. STEPNO is
incremented in preparation for the next step.

- 10 -

30D AO 03 LDY #3

30F A2 03 LDX #3

311 Bl B8 PARMOV IDA (STEPLO),Y
313 95 BO STA PARAMP,X
315 CA DEX

316 88 DEY

317 10 F8 BPL PARMOV
319 E6 B7 INC STEPNO

The Function Code and the three Parameters have now been moved to the
standard Page Zero locations where they are readily available to the
specific Functions. The Function Code itself is still in the Accumulator
and is now multiplied by two via the ASL command to be used as an index
into the Function Table which contains the two byte memory address of
each Function. The low address byte is picked up and moved to a fixed
location TRANLO. The high address byte is then picked up and moved to
the fixed location TRANHI., An indirect jump is now made through the
TRANLO/TRANHI location to the Function routine.

31B 0A ASL

31Cc A8 TAY

31D Bl BC . LDA (FUNTBL),Y
31F 85 BA STA TRANLO

321 C8 INY

322 Bl BC IDA (FUNTBL),Y
324 85 BB STA TRANHT

326 6C BA 00 JMP (TRANLO)

The Function Table can be located anywhere in memory. A pointer to the
Function Table is contained in a pair of locations in Page Zero FUNTBL

and FUNTBH, PLEASE has its Function Table starting at location $164.

Since each Function requires two bytes of address, and there are E
standard Functions, these Functions require locations through @11B.
Locations @11C through §11F are reserved for expansion of the standard
Functions, Locations $#12¢ through $12F are reserved for special Functions.

The TRANLO/TRANHI locations do not need to be preserved and are therefore
freely available to the Function as temporary storage.

Every Function returns to the Interpreter when finished its operation,
Some return via the SETSTP location when they are modifying the order
of Step execution, that is are causing a branch., Most Functions return
via the NXTSTP location which causes the next Step in sequence to be
executed.

- 11 -

Cco

C2
C3
C4
C5

c7

PARAM@
PARAM1
PARAM2
PARAM3
ADRLO
ADRHI
PNTR
STEPNO
STEPLO
STEPHI
TRANLO
TRANHI
FUNTBL
FUNTBH
PTEMP@
PTEMP1

THOUS
TENS
TENTHS
MILLI
HOUR
MINUTE
SECOND
ONESEC

DSP@
DSP1
DSP2
DSP3
DSP4
DSP5
DSPLO
DSPHI

DCONLO
DCONHI
HEXLO
HEXHI
ALPHLO
ALPHHI
XTABLE
TEMP
LIMIT
DSPPOS
CURPNT
CHAR
CTABLO
CTABHI
KEYTST
KEYVAL

Page Zero

Parameter § is usually the COMMAND CODE
Parameter 1 is usually DATA

Parameter 2 is usually DATA

Parameter 3 is usually DATA

Low Address pointer for Indirect Address

High Address pointer for Indirect Address
Temporary Pointer Storage

Number of NEXT PLEASE Step

Low Address of Current PLEASE Step

High Address of Current PLEASE Step

Temporary Transfer Pointer to PLEASE Function
Temporary Transfer Pointer to PLEASE Function
Low Address of PLEASE Function Table

High Address of PLEASE Function Tabie

PLEASE Temporary Storage

PLEASE Temporary Storage

Thousands and Tens of Thousands of Seconds
Tens and Hundreds of Seconds

Tenths and Seconds

Thousandths and Hundredths of Seconds

Hour portion of 24 Hour Clock

Minute portion of 24 Hour Clock

Second portion of 24 Hour Clock

Counter for One Second

Display Position § (Leftmost Digit)

Display Position 1

Display Position 2

Display Position 3

Display Position &4

Display Position 5 (Rightmost Digit)

Low Address of Display Buffer (Usually = DSP§ = C8)
High Address of Display Buffer (Usually = DSP@ = 00)

Display Conversion Table Low Address

Display Conversion Table High Address

Hexidecimal (and Decimal) Conversion Table Low Address = E7
Hexidecimal (and Decimal) Conversion Table High Address = 17
Alphabetic Conversion Table Low Address (usually = Fp)
Alphabetic Conversion Table High Address (usually = 03)
Used by Conversion Routine to Point to HEX or ALPHA Table
General Purpose Temporary Save Location

Used by Conversion Routine. General Purpose Register
Executive Pointer to Current Display Position

Used by Input Routines as Current Data Pointer.

Save Location for Input Character

Command Table Low Address (usually = AQ)

Command Table High Address (usually = §@)

Used by Executive as part of Keyboard Input

Contains Last Character of Input String

- 12 -

D@ BUFP General Purpose Buffer

El BUF1

E2 BUF2

E3 BUF3

E4 BUF4

E5 BUF5

E6 ALT(Alternate General Purpose Buffer
E7 ALT1

E8 ALT2

E9 ALT3

EA ALT4

EB ALTS

EC APL§ Application General Registers
ED APL1

EE APL2

Other PAGE ZERO Location Information

00 to 9F PLEASE CODE, four bytes per STEP, max 40. (28) Steps.
00 to OF PLEASE CODE for COMMAND DECODER

A0 to AF COMMAND TABLE contains two bytes per entry, max eight
EF to FF Used by KIM-1 Monitor (8) Commands
EF PCL Program Counter - Low Order Byte

FO PCH Program Counter - High Order Byte

Fi P Status Register

F2 SP Stack Pointer

F3 A Accumulator

F4 Y Y-Index Register

F5 X X-Index Register

Other MEMORY Location Information

100 to 11F PLEASE Function Table, two bytes per entry, Low-High Address
120 to 12F APPLICATION Specific Function Table

130 to 1EF APPLICATION Specific Assembly Level Code

1F0 to 1FF STACK

200 to 3FF Standard PLEASE Functions Assembly Level Code

1780 to 17E6 PLEASE Executive
17E7 to 17FF Used by KIM-1 Monitor

1800 to 1FFF KIM-1 Monitor (ROM)

- 13 -

Function: ALPIN Code: 008

Purpose: Accept Alphabetic Input from the Keypad, store it in memory,
convert to displayable characters, and display characters as input.

Command : ALPIN

Paraml: Memory Address to Store Characters. Page Zero Locations.
Param?2: Start Display Location. Leftmost = @, Rightmost = 5,
Param3: End Display Location. Leftmost = @, Rightmost = 5,

Param2 and Param3 control how many characters may be input - 1 to 6,
where the characters get displayed within the six digit LED, and the
mode of displaying - either fillin or shift. The number of characters
"equals the absolute difference between Param? and Param3 plus 1. Where
they are displayed is determined by Param2, the Start Display Location.
The mode of displaying is fillin if the Start Location. is less than the
End Location. The mode of displaying is shift if the Start Location is
- greater than the End Location. If equal the mode is fillin.

The input data is stored as one character per byte in consecutive memory
locations in Page Zero starting at the location specified by Paraml. The
order of storing is independent of the display mode. The first character
typed is stored in the specified memory location, the second character in
the next location,.... See page 9 for the Keypad to Alpha Conversions,

Function: HEXIN Code: @1

Purpose: Accept Hexidecimal Input from the Keypad, store it in memory,
convert to displayable characters, and display characters as they are
input,

Command : HEXIN

Paraml: Memory Address to Store Characters. Page Zero Locatioms,
Param?2: Start Display Location. Leftmost = @, Rightmost = 5,
Param3: End Display Location. Leftmost = @}, Rightmost = 5,

See ALPIN above for details on operation and parameters.

Function: DECIN Code: @2
Purpose: Accept Decimal Input from the Keypad, store it in memory,
convert to displayable characters, and display characters as they are

input.

Command : DECIN

Paraml: Memory Address to Store Characters. Page Zero Locations.
Param?2: Start Display Location. Leftmost = @, Rightmost = 5.
Param3: End Display Location. Leftmost = @, Rightmost = 5.

See ALPIN above for details on operation and parameters.

- 14 -

ALPIN, HEXIN, and DECIN use the same source code. The only difference is
in the conversion tables used and the input limits set. These differences
are taken care of by short initialization sequences as follows.

ALPIN uses the entry point ALPHA, It sets up a pointer to the Alpha Table
and sets the input limit to 1@ which permits input in the range § to F.

329 A9 10 ALPHA LDA #10
32B A2 D4 IDX #ALPHLO
32D DO 08 BNE SETTAB

HEXIN uses the entry point HEXIN, It sets up a pointer to the Hexidecimal
Table and sets the input limit to 1@ which permits input in the range
§ to F.

32F A9 10 HEXIN 1DA #10
331 DO 02 BNE SETHEX

DECIN uses the entry point DECIN. It sets up a pointer to the Hexidecimal
Table and sets the input limit to 1ff. which permits input in the range

@ to 9. A call is then made to the subroutine DIRADR which converts the
Paraml address into a two byte address which is stored in a pair of Page
Zero locations ADRLO and ADRHI for general usage.

333 A9 0A DECIN LDA #0A
335 A2 D2 SETHEX LDX #HEXDEC
337 86 D6 SETTAB STX XTABLE
339 85 D8 STA LIMIT
338 20 83 03 JSR DIRADR

RSTART calls a subroutine CLRDSP which clears that portion of the display
specified by Param2? and Param3 as the display limits. It then sets a
value called current pointer CURPNT to equal Param? the start locationm.

. This initializes the input routine and is also used to reinit in the event
that a special character to clear the display is received, the PC key.
The PC key may be used at any time to clear that portion of the display
under control of the current function., Remember that as little as one
character may be specified by these input functions, and that the display
may at any time consist of sections which were input or generated by
other functions. Param? and Param3 totally define the portion of the
display that will be affected by the current function.

33E 20 97 03 RSTART JSR CILRDSP

341 AS B2 LDA PARAM?
343 85 DA STA CURENT
345 10 03 BPL MORE

- 15 -

SAVE is skipped over the first time since there is no input data to be
stored, MORE performs several functions. First it calls a subroutine

to convert the raw data in the Paraml defined buffer to displayable form
in the display buffer. It specifies the conversion table by loading X
with a pointer to the correct conversion table. CONDSP is on page 18.

A call is then made to EXSET to permit the Monitor to gain control for

a millisecond cycle and to permit keypad input. The location CHAR will
contain a 20 if there has been no input or the value of the input if there
was any. The CHAR is moved to A and the location reset to 20. Then a
test is made for the "erase' key, the PC key. If the last character was

a PC then the program branches to RSTART. If there was no character,

then the program branches to MORE, If there was a character, then it is
tested for the limit. If the input character is less then the limit, then
it is saved by branching to SAVE which calls a store the character sub-
routine STORE. If the input character is equal to or greater than the
limit, then the function exits to the next step NXTSTP after storing the
final character value in KEYVAL for testing by other functions.

347 20 DO 03 SAVE JSR STORE

34A A6 D6 MORE IDX XTABLE
34C 20 A9 03 JSR CONDSP
34F 20 D9 17 JSR EXSET
352 A5 DB LDA CHAR
354 A2 20 1DX #20
356 86 DB STX CHAR
358 C9 14 CMP #PC
35A FO E2 BEQ RSTART
35C 10 EC BPL MORE
35E C5 D8 CMP LIMIT
360 30 ES5 BMI SAVE
362 85 DF FINISH STA KEYVAL
364 10 9E BPL NXTSTP

Any of the "control" keys except PC will cause termination of the imput
function. This means that GO, +, AD or DA may be used as valid terminators.
Because the final character is saved in KEYVAL, a BRTABL Function can be
used to branch within the program as a function of the terminator. This
feature is used in the ADDSUB Program.

Subroutine: DIRADR
Purpose: Move Page Zero Direct Address value from Paraml to the full
address pointers ADRLO/ADRHI for general use.

383 A5 Bl DIRADR 1IDA PARAMI
385 85 B4 STA ADRLO
387 A9 00 1DA #00
389 85 BS STA ADRHI
388 60 RTS

=, 16 =

Subroutine: INDADR

Purpose: To move a pair of Page Zero bytes which contain a full
memory address from the location pointed to by Paraml to the full address
pointers ADRLO/ADRHI for general use. This permits a full two byte
address to be referenced by a single byte parameter. This subroutine is
used by the Branch on Table Lookup Function BRTABL to point to the table
to be searched. ¥

38C A6 Bl INDADR ILDX PARAMI
38E B5 00 XNDADR IDA 0,X
390 85 B4 STA ADRLO
392 B5 01 LDA 1,X
394 85 BS STA ADRHI
396 60 RTS

Subroutine: CLRDSP

Purpose: To Clear that portion of the Display defined by Param? and
Param3 by filling it with nulls,

Subroutine: FILDSP

Purpose: To Fill that portion of the Display defined by Param2 and
Param3 with the value contained in the Accumulator.

These two subroutines use the same code except that CLRDSP sets a value
of FF in the Accumulator as a special value which will be converted to
a blank by the CONDSP subroutine,

397 A9 FF CLRDSP LDA #FF
399 A2 06 FILDSP LDX #06
39B 86 D7 STX TEMP
39D A4 B2 LDY PARAM2
39F 84 DA STY CURPNT

3A1 20 DO 03 FILNXT JSR STORE

3A4 C6 D7 DEC TEMP
3A6 DO F9 BNE FILNXT
3A8 60 RTS

These routines actually do not directly effect the display. They work by
modifying the data in the memory storage area which is then converted and
moved to the Display buffer by the CONDSP routine. They are special
purpose routines and are intended for use with the Keypad Input routines
ALPIN, HEXIN and DECIN. There is a FILL Function for more general memory
filling and clearing.

= 17 =

Subroutine: CONDSP
Purpose: Convert data from binary form to LED Segment Display Format.

The KIM-1 Display consists of six elements each of which in turn is
composed of seven independent light emitting diode LED segments. Each
segment is turned on or off under program control, The seven segments
each have a binary value as shown in the diagram,

For example, to show the digit "8" all segments are turned on by putting
a 7F on the display output lines. 7F = 40 + 20 + 10 + 08 + 04 + 02 + 0O1.
The letter "L" has a value of 38 = 20 + 10 + 08, Since the display
values of the various characters bear no relation to their binary form,

a translation is required, The binary value 08 will be displayed as an
eight "8'" in Hexidecimal or Decimal mode and as ell "L'" in Alpha mode,

The convert to display subroutine CONDSP performs this conversion., On
entry X contains the address of a Page Zero location which has the low
order address of a conversion table, followed by a byte which contains

the high order address of the table, Normally PLEASE supports two tables:
ALPHA and HEXIDECIMAL as described on page 9. The programmer could make
other tables to suit his own needs. CONDSP moves the table address to a
standard Page Zero pair of locations for easy use., It picks up the Param2
address for Start Location. Locations ADRLO/ADRHI point to the buffer,.

3A9 B5 00 CONDSP LDA 0,X 01

3AB 85 DO STA DTABLO 2€0 [/ /02
3AD B5 01 DA 1,X Iy
3AF 85 DI STA DTABHI w 7 Jou
3Bl A4 B2 IDY PARAMZ /08 /

CON saves the current location. It then picks up the character in the
buffer and tests it for a negative value, Normally the value of a char-
acter being output must range between § and F, or @ and 9 for decimal,

A negative value is used to cause a blank output., This is why CLRDSP
filled the buffer with FF not #f. A positive value is used to perform
the table lookup for the translated value. The value from the table is
placed in the display buffer, Tests are made against Param3 to determine
if all positions have been converted, or if not which direction to shift
the pointer to handle both fillin and shift modes of input,

383 84 D7 CON STY TEMP
3B5 Bl B4 LDA (ADRLO),Y
387 10 04 BPL - CON2

3B9 A9 00 LDA #00

3BB FO 03 BEQ CON3

3BD A8 CON2 TAY

3BE Bl DO LDA (DTABLO),Y
3C0 A4 D7 CON3 LDY TEMP

3c2 91 CE STA (DSPLO),Y
3C4 G4 B3 CPY PARAM3

366 FO 27 BEQ RETURN

3c8 30 03 BMI INCR

3cA 88 DEY

3CB 10 E6 BPL CON

3¢D C8 INCR INY

3CE 10 E3 BPL CON

- 18 -

Subroutine: STORE

Purpose: To place data in a buffer with parameters controlling the
amount of data and the mode of storing: fillin or shift.

STORE is an integral part of the Keypad Input routines. Before it is
called the address of the storage buffer is placed in the standard Page
Zero locations ADRLO/ADRHI., Param? determines the Start of storage
within the buffer, Param3 determines the End, and the relative values
of Param? and Param3 determine whether the mode is fillin or shift.

The character to be stored is in the Accumulator on entry. The char-
acter is saved in X. A test is made for mode by comparing Param?2 and
Param3. If Param3 is greater than Param2 or equal, then fillin mode is
used, A test is made for end of buffer by comparing Param3 with the
current pointer CURPNT, If Param3 is greater than the CURPNT, then
CURPNT is incremented and the character is stored. If Param3 is less
than CURPNT, then an immediate return is made and no character is stored.

3D0 AA STORE TAX

3D1 A4 B3 LDY PARAM3
3D3 C4 B2 CPY PARAM2
3D5 30 0A BMI SHIFT
3D7 C4 DA CPY CURPNT
3D9 30 14 BMI RETURN
3DB A4 DA LDY CURPNT
3DD E6 DA INC CURPNT
3DF 10 OC BPL PUT

If Param3 was less than Param? then shift mode is used. SHIFT first moves
all characters within the portion of the buffer defined by Param2 and
Param3 one position up in memory. When all characters have been shifted
it gets the new character back from X and stores it in the buffer at the
last position as defined by Param3.

3E1 C8 SHIFT INY
3E2 Bl B4 LDA (ADRLO),Y
384 88 DEY

3E5 91 B4 STA (ADRLO),Y
3E7 C8 INY

3E8 C4 B2 CPY PARAM?
3EA 30 F5 BMI SHIFT

3EC 8A TXA

3ED 91 B4 PUT STA (ADRLO),Y
3EF 60 RETURN RTS

- 19 s

<

Function: ALPOUT Code: @3

Purpose: Convert and Display data in Alpha mode, using standard
PLEASE Alpha Table.

Command : ALPOUT

Paraml: Memory Address of Buffer, Page Zero Locations.
. Param2: Start Display Location. ZLeftmost = @, Rightmost
Param3: End Display Location. Leftmost = @, Rightmost

5.
5.

Data to be output should be in range @@ to §F for real data or FF for

a blank. Other values will give strange results. The Alpha Table on
page 9 shows the standard conversions. The order of the Start and End
does not matter, Start less than End will be handled as fillin and End
less than Start will be handled as shift, but since the whole conversion
takes place within a single millisecond cycle there will be no visible
difference.

Function: HEXOUT or DECOUT Code: @4

Purpose: Convert and Display data in Hexidecimal mode, using standard
KIM-1 Hexidecimal Table.

Command : HEXOUT or DECOUT

Paraml: Memory Address of Buffer, Page Zero Locations.
Param?: Start Display Location. Leftmost = @, Rightmost = 5.
Param3: End Display Location. Leftmost = @, Rightmost = 5.

' Data to be output should be in range @ to §F for Hex or @@ to $9 for
Decimal. A value with bit 8§ set will produce a blank. Values in the
range 10 to 7F will give strange results, See ALPOUT comments above
for other details. HEXOUT is the entry point for HEXOUT/DECOUT.

283 A2 D4 ALPOUT 1DX #ALPHLO
285 DO 02 BNE GETADR
287 A2 D2 HEXOUT 1IDX #HEXDEC
289 20 83 03 GETADR JSR DIRADR
28C 20 A9 03 JSR CONDSP

28F 4C 04 03 TONEXT JMP NXTSTP

For an example of the use of ALPOUT see the HiLo program.
For an example of the use of HEXOUT and DECOUT see the Decimal/Hexi-
decimal Conversion program.

- 20 -

Function: TIMER Code: §5

Purpose: Provide a programmable delay while maintaining the basic
system operations of Display Refresh and System Clock Updating.

Command : TIMER

Paraml: Delay Time in Tenths of a Second. Range 0.1 to 25.6 seconds.
Param2: Step Number to Branch to when Delay is done.
Param3: not used

There are a number of uses for a timer. Several programs flash all or
part of the Display. This is easily accomplished by changing all or
part of the Display, waiting a set period of time using TIMER, changing
the Display again, waiting, and so forth. Another use for TIMER is in
TIPSY in which the Player is shown the test numbers for 2 seconds and
then must wait 1 second before typing his answer, The basic unit of
TIMER is 0.1 seconds. This is generated from the Monitor Millisecond
loop by setting up two counters to provide a 100 millisecond = 0.1 second
delay. Intermediate returns are made to the Monitor to permit the basic
system operations to take place and to complete the millisecond loop.
After 0.1 seconds have been timed, the Delay Time is decremented and
tested. If the Delay Time has gone to zero, then the next Step Number
is pickup and a return is made to the Interpreter at the Set Step SETSTP
location. Delay Time is held in Paraml and next Step Number in Param2.

2AA A9 0A TIMER LDA #10,
2AC 85 BE STA TEMP1
2AE A9 0A RESET LDA #10.
2BO 85 BF STA TEMP2
2B2 20 D9 17 WAIT JSR EXSET
2B5 C6 BF DEC TEMP2
2B7 DO F9 BNE WAIT
2B9 C6 BE DEC TEMP1
2BB DO F1 BNE RESET
2BD C6 Bl DEC PARAMIL
2BF DO E9 BNE TIMER
2C1 A5 B2 LDA PARAM2
2¢3 10 3D BPL SETSTP

Warning: Remember that the Delay Time in Paraml is in tenths of a second.

Note: Obviously only a single counter is required to keep a 100, count.
The double counter is provided so that a longer base interval can be
generated by changing the two counter constants, The maximum base
interval would be slightly over one minute (65,536 milliseconds) which
means that a delay can be specified of over four hours (256+ minutes)

if the base interval is changed. An even longer interval could be
generated by having multiple TIMER calls., However, since the TIMER is
based on the crystal and a slight variation in time can cause a large
error when accumulated over millions of cycles, this TIMER will not be
very accurate for long periods.,

= 21 =

Function: PACK Code: @6
Purpose: To take a series of characters and pack them two to a byte,

Command : PACK

Paraml: Source Buffer which contains Characters. Page Zero.
Param?2: Destination Buffer or Byte to receive result, Page Zero.
Param3: Number of Bytes in the Destination

While it is convenient to input characters in four bit chunks and keep
them that way for displaying, it is often an inconvenient form for
processing data, PACK provides a simple method of combining the raw
input data into compact bytes. An input character must be in the range
. @@ to @F. Two such characters fit into a single byte. PACK can handle
as little as one byte or 'as many as 256, PACK picks up the first char-
acter of the pair to be packed and shifts it into the Most Significant
Bits of the Accumulator and then performs a logical inclusive Or to

get the second character into the Least Significan Bits. It then tests
the Carry bit to see if a dummy blank character FF was the first char-
acter. If it was it loads the second character into the Accumulator
and test if it was a blank character. If it was it loads zevo as the
result of packing two blank characters. If the first or second char-
acter is not a blank, then the combined characters are now stored as

a single packed byte. This packing of character pairs continues until
the requested number of bytes have been created.

238 A6 Bl PACK IDX PARAMI1
23D B5 00 LDA 0,X
23F 0A ASL

240 0A ASL

241 0A ASL

242 0A ASL

243 15 01 ORA 1,X
245 90 06 BCC PACK2
247 B5 01 LDA 1,X
249 10 02 BPL PACK2
24B A9 00 LDA #00
24D A6 B2 PACK2 LDX PARAM2
24F 95 00 STA 0,X
251 E6 Bl INC PARAML
253 E6 Bl INC PARAMI1
255 E6 B2 ING PARAM?
257 C6 B3 DEC PARAM3
259 DO EO BNE PACK
25B FO 32 BEQ TONEXT

For examples of PACK in use, see the DECODE program, SCLOCK program, or
STIMER program,

- 22 -

Function: UNPACK Code: @7

Purpose: To separate bytes into characters, normally in order to make
them available for displaying.

Command : UNPACK

Paraml: Source Buffer which contains Bytes, Page Zero.
Param?2: Destination Buffer to receive Characters. Page Zero,
Param3: Number of Characters in the Destination.

Normally data is processed in a packed form or binary form. Since the
display only uses values in the range @@ to @¢F for its normal character
generation, a means of converting from packed to unpacked form is re-
quired. UNPACK performs this function. One or more bytes are split
into their component characters, The Most Significant Bits are used as
the first character of a pair, the Least Significant Bits as the second
character, UNPACK can be used to generate from ome to 256 characters.
UNPACK picks up the byte to be unpacked, shifts off the second char-
acter and stores the first character in the destination buffer, It

then tests for any more characters required. If no more, then it is
done and goes to the next step NXTSTP in the Interpreter. If more is
required it masks off the second character from the same byte and stores
it in the destination buffer. After some housekeeping, it test for any
more characters required. If so it gets the next byte and continues.

If no more are required it goes to the next step NXTSTP in the Interpreter.

25D A6 Bl UNPACK IDX PARAMI
25F B5 00 LDA 0,X
261 4A LSR

262 4A LSR

263 4A LSR

264 4A LSR

265 A6 B2 IDX PARAM2
267 95 00 STA 0,X
269 E6 B2 INC PARAM?2
26B C6 B3 DEC PARAM3
26D FO 1E BEQ TONEXT
26F A6 Bl LDX PARAMI1
271 A9 OF ILDA #OF
273 35 00 AND 0,X
275 A6 B2 IDX PARAM2
277 95 00 STA 0,X
279 E6 B2 INC PARAM2
27B E6 Bl INC PARAM1
27D C6 B3 DEC PARAM3
27F DO DC BNE UNPACK
281 FO OC BEQ TONEXT

For examples of UNPACK in use see DCLOCK program, DTIMER program, or the
Shooting Stars program.

- 23 -

Function: BRANCH Code: @8
Purpose: Provides an Unconditional Branch to any specified Step.

Command : BRANCH

Paraml: Step to Branch To.
Param?2: not used
Param3: not used

Almost every conceivable PLEASE program has one or more loops in it or
is itself a large loop. The BRANCH function permits transfer of control
to a Step other than the next sequential Step. BRANCH picks up the Step
number from Paraml and then goes to the Set Step SETSTP entry of the
Interpreter.

2A6 A5 Bl BRANCH LDA PARAM1
2A8 10 58 BPL SETSTP
Function: BRCHAR Code: @9

Purpose: Provide Program Control from the Keypad.

Command : BRCHAR

Paraml: Character for Match.
Param2: Step to Branch to on Match,
Param3: Step to Branch to on Non-match.

BRCHAR picks up the current value of the Page Zero location CHAR which
contains the last input character or a 20 if there is no valid input.

It clears the CHAR location and tests for valid input., If there is no
character ready, then a return is made to the Next Step NXTSTP entry of
the Interpreter and the next Step is executed. If there is a character

it is tested for a match with the specified match character in Paraml,

If they match, then the Match Step in Param? is used as the next step.

If they do not match, then the Non-match Step in Param3 is used. 1In
either case the parameter value is loaded into the Accumulator and control
goes to the Set Step SETSTP entry of the Interpreter.

292. A6 DB BRCHAR IDX CHAR
294 A9 20 LDA #20
296 85 DB STA CHAR
298 EO 20 CPX #20
29A FO F3 BEQ TONEXT
29C A5 B2 LDA PARAM2
29E E4 Bl CPX PARAM1
2A0 FO 02 BEQ OKAY
2A2 A5 B3 LDA PARAM3
2A% 10 5C OKAY BPL SETSTP

For examples of BRCHAR see DCLOCK program or DTIMER program.

-2 -

Function: BRTABL Code: @A
Purpose: Provide Program Control as a function of a Table Lookup.

Command : BRTABL

Paraml: Page Zero Indirect Address of Table.

Param2: Direct Address of Value to be Matched. Page Zero.
Param3: Step Number to Branch to if No Match,

This is a very powerful method of branching., A value may be generated
by any means such as characters from the Keypad, result of a calculation,
or whatever, A table is set up which contains the permitted values and
the step number to go to if that value occurs. Many value can branch

to the same Step. Every value may branch to a different Step. The

table could itself be modified and/or generated under the program.

BRTABL starts by calling the INDADR subroutine to move the table address
into the standard locations ADRLO/ADRHI, It then picks up the test value
via Param2 and compares it with a value in the table. If a match is
found, then the next byte in the table is picked up and used as the next
step number by going to the Set Step SETSTP entry of the Interpreter.

If it is not a match, then the pointers are moved to the next value in
the table which is checked for zero. If the next value is a zero it
indicates the end of the table and a no match condition. In this case
the value of Param3 is used as the nest step number via the Set Step
SETSTP entry to the Interpreter. If the next value is not a zero, then
BRTABL continues testing until either a match is found or the end of the
table is reached.

366 20 8C 03 BRTABL JSR INDADR

369 A6 B2 LDX PARAM2
36B A0 00 LDY #00

36D B5 00 MORE DA 0,X

36F DI B4 CMP (ADRLO),Y
371 FO 0A BEQ FOUND

373 C8 INY

374 C8 INY

375 Bl B4 IDA (ADRLO),Y
377 DO F4 BNE MORE

379 A5 B3 LDA PARAM3
37B 10 85 BRDONE BPL SETSTP
37D C8 FOUND INY

37E Bl B4 LDA (ADRLO),Y
380 10 F9 BPL BRDONE

The table has two bytes per entry. The first byte is the value to be
tested. The second value is the Step Number to go to on a match. The
table must be terminated by a zero value, therefore, zero may not be

used for a test value unless it is the first test value which is matched
before the end of table test is performed. For examples of BRTABL see the
DECODE program or the ADDSUB program.

- 25 =

Function: FILL Code: @B

Purpose: Provide a means of filling a section of Page Zero memory
with a specified value,

Command : FILL

Paraml: Memory Address of Start of Page Zero Memory to be Filled.
Param?: Value to Fill Memory with,

Param3: Number of bytes of Memory to Fill.

Since all of the working locations, buffers, and so forth for PLEASE are
in Page Zero, this limited Fill command is sufficient for most purposes.
It is used to initialize buffers, clear specific bytes, clear the Display .
via its buffer, etc. FILL first calls the DIRADR subroutine to get the
Page Zero address to be modified into the standard ADRLO/ADRHI location.
It then picks up the Fill value from Param2 and proceeds to f£ill memory
starting at the last location to be modified and working back to the

first location, When finished it returns via the Next Step NXTSTP entry
in the Interpreter,

2E9 20 83 03 FILL JSR DIRADR

2EC A5 B2 IDA PARAM2
2EE A4 B3 LDY PARAM3
2F0 88 DEY

2F1 91 B4 FILLIT STA (ADRLO),Y
2F3 88 DEY

2F4 10 FB BPL FILLIT
2F6 30 0C BMI NXTSTP

For examples of FILL see the DECODE program or the DAFFY program.

Function: COMPARE Code: §C

Purpose: Provide a String Compare with a Three-way Branch on Less,
Equal, or Greater.

Command: COMPAR

Paraml: Page Zero Address of Test Value Start

Param?2: Page Zero Address of String to be Compared with.
Param3: Number of Bytes to be Compared.

Function: MATCH Code: @D

Purpose: Provide a String Compare with a Two-way Branch on Equal or
Not Equal.

Command : MATCH

Paraml: Page Zero Address of Test Value Start
Param?: Page Zero Address of String to be Matched to.
Param3: Number of Bytes to be Matched.

= 06 =

These two functions use essentially the same code. The only difference
is a test which causes MATCH to treat Less and Greater as a single con-
dition: Not Equal. First a call is made to the DIRADR subroutine to get
the Test String address in the standard ADRLO/ADRHI locations. A byte
from the second string is picked up. A byte from the first string is
subtracted from the second string byte and the result tested. 1If the
first string byte is less than the second string, then testing is com-
plete and control is returned to the Interpreter through the Next Step
NXTSTP entry point. If the first string byte is greater than the second
string byte, then an additional test is made to determine if this is a
COMPAR or MATCH., If a MATCH, then it is treated identically as the less.
If a COMPAR, then the Step Number STEPNO is incremented twice to cause
the next two Steps to be skipped. If the first and second bytes are
equal, then the number of bytes to test is checked. If all bytes have
been tested, then the Step Number STEPNO is increment once to cause the
next Step to be skipped. If all bytes have not been tested, then testing
continues with the next pair of bytes.

COMPAR and MATCH Branch Summary: First String to Second String

COMPARE MATCH
Less Skip @ Steps Less Skip @ Steps
Equal Skip 1 Step Equal Skip 1 Step
Greater Skip 2 Steps Greater Skip @ Steps

2C5 20 83 03 COMPAR JSR DIRADR

2C8 A6 B2 1DX PARAM?
2CA A0 00 DY #00
2CC -B5 00 CTEST 1IDA 0,X
2CE 38 SEC

2CF DI B4 SBC (ADRLO),Y
2D1 FO OE BEQ SAME
203 BO 0A BCS LESS
2D5 A9 OD GREAT 1DA #MATCH
2D7 €5 BO CMP PARAM$
2D9 FO 04 BEQ LESS
2DB E6 B7 INC STEPNO
2DD E6 B7 EQUAL INC STEPNO
2DF 10 23 LESS BPL NXTSTP
2E1 E8 SAME INX

2E2 C8 INY

2E3 C4 B3 CPY PARAM3
2E5 DO E5 BNE CTEST
2E7 FO F& BEQ EQUAL

For examples of COMPARE see the HILO program.
For examples of MATCH see the TIPSY program,

= 27 =

Program Module #1

LOC OBJECT

00E00005
06EODFO1
0BC80006
0ADCDFO00

02E00005
06E0C403
07C4E006
04E00005
09130004
08060000

02E00500
06EOC103
07C1E006
04E00005
0913000A
080C0000

11D0010A
09130013
08100000
12CA0104
09130010
08130000

0BE00006
07C1E004
02E60003
10E6EC20
04E00005
05021€00
0BCC0002
05011E00
09130016
081A0000
04E60405
09130018
08210000

O o~N O

HEgOQw

10

12
13
14
15

COMMAND PARAM1

Command Decoder

STEP LABEL
¢ DECODE ALPIN
1 PACK
2 FILL
3 BRTABL

Set Clock and Display Clock

SCLOCK DECIN
PACK

DCLOCK UNPACK
DECOUT
BRCHAR
BRANCH

Set Timer and Display Timer

STIMER DECIN
PACK
DTIMER UNPACK

DECOUT

BRCHAR
BRANCH

BUFFER
BUFFER
DISPLAY
CMDTBL

BUFFER
BUFFER
HOUR
BUFFER
GO
DCLOCK

BUFFER
BUFFER
TENS
BUFFER
GO
DTIMER

Notice and Billboard

NOTICE MESAGE NMSGLO
BRCHAR GO
BRANCH NOTICE

BILBRD BBOARD BMSGLO
BRCHAR GO
BRANCH BILBRD

Daffy

DAFFY FILL ANSWER
UNPACK TENS

GET DECIN GUESS
MASTER GUESS

GOOD DECOUT ANSWER
TIMER 24

BLANK FILL DISPLAY+4
TIMER 1

WAIT BRCHAR GO
BRANCH GOOD

BAD DECOUT GUESS

HOLD BRCHAR GO
BRANCH HOLD

- 28 -

PARAM2

KEYVAL

KEYVAL

o

HOUR
BUFFER
p
DECODE.

5

TENS
BUFFER
[
DECODE

MSGHI
DECODE

MSGHI
DECODE

9
ANSWER
o
ANSWER
9
BLANK

[
WAIT
DECODE

4
DECODE

PARAM3

5
i
6
DECODE

W uv oL

CLOCK

10.
BILBRD

NOTICE

AD

U W

DAFFY

GET

Program Module #1 Notes and Comments
DECODE Command Decoder

This program is called when the system is initialized or when various
programs are complete. Its purpose is to allow the user to select a
program from the keypad. ALPIN is used to input the program name from

the keypad. At least two characters of the name must be typed, additional
characters are optional. PACK is used to combine the first two characters
into a single byte for testing by BRTABL, FILL is used to clear the
display by filling the display buffer with nulls, BRTABL is used to
lookup in the Command Table CMDTBL the Step Number STEPNO of the requested
program and to transfer control to that program.

SCLOCK and DCLOCK Set Glock and Display Clock

These programs set the system clock and display the current contents of
the system clock., DECIN is used to input up to six characters in the
fillin mode. PACK converts the input characters into three bytes in the
system clock. UNPACK converts the current contents of the system clock
into separate characters, DECOUT converts these characters into their
displayable form and moves them to the display buffer. BRCHAR returns
to DECODE if the GO key is pressed; goes to SCLOCK if any other key is
pressed; or goes to the next step if no key is pressed. BRANCH which is
reached by no key being pressed goes to DCLOCK so that the display is
constantly updated with the current value of the system clock.

STIMER and DTIMER Set Timer and Display Timer

These programs set the system timer and display the current contents of

the system timer. DECIN is used to input up to six characters in the

shift mode. The remainder of the program is identical to SCLOCK and DCLOCK
described above.

NOTICE and BILBRD Notice and Billboard Message Display

These programs display a message in alphabetic characters. NOTICE displays
six characters per frame for one second per frame. BILBRD displays its
characters by shifting them in one at a time from the right to the left
at a shift rate of one shift every 0.4 seconds. MESAGE/BBOARD call the
same routine, the only difference being an internal test performed on the
value of the command MESAGE = 11 and BBOARD = 12 which determines how the
data is presented. BRCHAR goes to DECODE on a GO key; goes to the other
program on any other key NOTICE to BILBRD or BILBRD to NOTICE; or goes to
the next step if no key is pressed. BRANCH goes to restart the program
which causes the message to be repeated continuocusly until some key is
pressed.

DAFFY The Daffy (Mastermind) Number Guessing Game

FILL clears the answer buffer, UNPACK is used to create an answer from
the system timer. DECIN gets the users four digit decimal guess. MASTER
is special code to evaluate the guess. It compares GUESS and ANSWER and
if not a match, branches to BAD. On a perfect match it drops through to
GOOD. The remainder of the program displays the number of guesses in a

. flashing mode on GOOD or the evaluation of the guess on BAD.

= 20 =

MESAGE and BBOARD special functions..

The NOTICE program uses a special function MESAGE to output the 'canned"
message six characters at a time. The BILBRD program uses a special
function BBOARD to output the '"canned' message one character at a time

producing a moving message.

Actually both MESAGE and BBOARD are the

same routine, differing only by a single internal test which causes
the six or one character change in the display. Both functions are

Notice and Billboard

LoC

190
192
194
196
198
19A
19D
19F
1A0
1A1
1A3
1A5
1A7
1A9
1AB
1AD
1AF
1B1
1BR3
1B5
1B7
1B9
1BB
1BE
1C0
1C2
1C4
1C6
1C8

1cA
1D0
1D6
1DC
1E2
1E8
1EE

called by entering at the
MESAGE entry point. The
value of the Command is
used to determine the par-

OPERATION ticular function.

DY #00 Initialize start of message.
STY PLACE

1DX #00 Get next character.

LDA (PARAM1),Y If character is minus, then
BPL OKAY end of message.

JMP NXTSTP '

STA DSP@,X Store character is display
INY buffer. Bump pointers,

INX

CPX #6 Test six characters done.
BNE FETCH If not, get next,

ILDA PLACE Get message place pointer.
IDX #12 Test MESAGE or BILBRD

CPX PARAM@ If MESAGE, then move place
BEQ INCR pointer forward six places,
ADC #5 If BILBRD, then move one
ADC #0 place.

STA PLACE Save modified PLACE.

LDA PARAM3 Get Delay from PARAM3

STA PTEMP@

LDA #100. Set 1/10 second timer.

STA PTEMP1

JSR EXSET Wait 1 millisecond

DEC PTEMP1 Bump 1/10 second counter
BNE WAIT until zero.

DEC PTEMP§ Then bump Delay counter
BNE SETIME until zero.

LDY PLACE Now get next frame of the
BPL MORE message.

Message for Notice and Billboard

Blanks for Billboard
PLEASE

CAN I

HELP

9

Trailing blanks
Terminator

-30 -

Daffy

LOC OBJECT LABEL OPERATION

130 20 83 03 MASTER JSR DIRADR Address of Guess

133 A6 B2 LDX PARAM?2 Bump Guesses Counter
135 F6 05 INC 5,X

137 A9 0A LDA #0A Test Units digit = 10.
139 D5 05 CMP 5,X

13B DO 06 BNE TEST

13D A9 00 LDA #0 Set Units = 0.

13F 95 05 STA 5,X Incr Tens digit

141 F6 04 INC 4,X

143 A9 00 TEST DA #0 Clear Evaluation

145 85 BE STA PTEMP{® Counters

147 85 BF STA PTEMP1

149 A0 03 LDY #3 Set Digit Counter

14B Bl B4 PTEST IDA (ADRLO),Y Get a Guess Character
14D D5 03 CMP 3,X Test Correct Char.

14F DO 02 BNE NOTPER in Correct Location.
151 E6 BE INC PTEMPQ Bump Counter

153 CA NOTPER DEX Test all four Guess
154 88 DEY Characters.

155 10 F4 BPL PTEST

157 A6 B2 LDX PARAM2 Test Correct without
159 A9 03 IDA #3 regard to position.
15B 85 D7 . STA TEMP

15D A0 03 SETUP LDY #3

15F B5 03 MATCH LDA 3,X Get Answer Digit

161 DI B4 CMP (ADRLO),Y Test Match

163 DO 08 BNE NMATCH

165 A9 FF LDA #FF If Match, wipe out the
167 91 B4 STA (ADRLO),Y Guess digit to prevent
169 E6 BF INC PTEMP1 multiple matches.

16B 10 03 BPL NEXT

16D 88 NMATCH DEY If No-match, keep trying
16E 10 EF BPL MATCH

170 CA NEXT DEX Get next Answer digit
171 C6 D7 DEC TEMP until all four done.
173 10 E8 BPL SETUP

175 A0 04 1DY #4 Test Perfect Match on
177 C4 BE CPY PTEMPY all four digits.

179 FO 04 BEQ DONE If so, then done.

17B A5 B3 LDA PARAM3 Else, use PARAM3 for next
17D 85 B7 STA STEPNO Step Number.

17F A5 BE DONE LDA PTEMP§ Move Evaluation counters
181 91 B4 STA (ADRLO),Y to Guess Buffer for
183 C8 INY displaying.

184 A5 BF IDA PTEMP1

186 91 B4 STA (ADRLO),Y

188 4C 04 03 JMP NXTSTP

- 31 -

P}ogram Module #2

LOC OBJECT

00
04

0oC

00E00005
06EODFO1
0BC80006
OADCDFO00

10000000
01E00303
110BOE0OO
07E6E402
04E00405
09130005
08090000
0BCC5302
09130004
080C0000
07E6E402
04E00405
080C0000

OBE6FF06
07C2E402
09130015
08130000
0BCC0002
02E60001
OCE6E402
081C0000
081E0000
036A0405
08130607
03720405
0813080A
04E00405
05012000
0BCC0002
05012200
09130011
081E0000

STEP IABEL COMMAND

¢
1
2
3

=

O MU QW P WO~ UL

PARAM1

Command Decoder

DECODE ALPIN

STAR
NEXT

RUN

RWAIT

LOSE
WAIT

WIN

PACK
FILL
BRTABL

Shooting

START
HEXIN
SHOT
UNPACK
DECOUT
BRCHAR
BRANCH
FILL
BRCHAR
BRANCH
UNPACK
DECOUT
BRANCH

BUFFER
BUFFER
DISPLAY
CMDTBL

Stars

BUFFER
LOSE
COUNT
BUFFER
GO
RWAIT
DISPIAY+4
GO
WAIT
COUNT
BUFFER
WAIT

HILO Number Guessing Game

HILO
WAIT

READY

HIGH
LOW
EQUAL
BLANK

NEXT

FILL
UNPACK
BRCHAR
BRANCH
FILL
DECIN
COMPARE
BRANCH
BRANCH
ALPOUT
BRANCH
ALPOUT
BRANCH
DECOUT
TIMER
FILL
TIMER
BRCHAR
BRANCH

- 32 -

GUESS
TENTHS

Go

WAIT
DISPIAY+:
GUESS
GUESS

LOW
EQUAL

HI

WAIT

10

WAIT
BUFFER

1
DISPIAY+4
1

felo)

EQUAL

PARAM?2

KEYVAL

KEYVAL

3

WIN
BUFFER+4
4
DECODE

mon

DECODE

BUFFER+4
4

FF
BUFFER+4
DECODE

¢
[
BUFFER+:

4
”H

4

llL

4
BLANK
[

NEXT
DECODE

PARAM3

DECODE

NEXT

STAR

2
READY

Program Module #2 Notes and Comments
DECODE Command Decoder See page 29.
STAR Shooting Stars Puzzle

This is the puzzle described by Willard I Nico in the May 1976 issue of
BYTE, and described and implemented by a number of other individuals
since. START initializes the puzzle by setting up the initial star map,
clearing the number of guesses counter, and so forth. HEXIN accepts a
single input from the user and displays it in position 3 of the display.
SHOT evaluates the user's shot. If the shot is invalid, that is it is
not an existing star, then the display is changed to a question mark and
the shot. is not counted. If the shot is valid a complex table lookup is
performed which produces the required changes in the galaxy. The result
is then evaluated. If all stars have vanished the program branches to
LOSE. 1If the winning position has been achieved the program branches to
WIN. Otherwise the program continues at RUN, UNPACK and DECOUT are used
to display the current shot count., BRCHAR and BRANCH are used to wait for
the user to press either GO to give up and return to DECODE or to press
any other key and go to NEXT for the next shot. LOSE uses FILL to put
two question marks in the count field of the display to indicate the loss.,
WIN uses UNPACK and DECOUT to display the final shot count. Both WIN and
LOSE go to WAIT and use BRCHAR and BRANCH to wait for a GO to return to
DECODE or any other key to go to STAR and restart the game,

HILO High/Low Simple Number Guessing Game

FILL and UNPACK use the system timer to generate a two digit decimal value.
WAIT uses BRCHAR and- BRANCH to wait until the user presses any key to
continue or GO to return to DECODE., READY uses FILL to clear the old
message HI or LO and DECIN to get the new guess. COMPARE evaluates the
guess and in conjunction with BRANCH goes to LOW, EQUAL, or HIGH. HIGH

or LOW use ALPOUT to display the appropriate message and then BRANCH to
WAIT., EQUAL uses the sequence of functions DECOUT, TIMER, FILL, TIMER,
BRCHAR, and BRANCH to flash the correct answer until a GO is pressed for
DECODE or any other key is pressed for another round of HILO.

SHOOTING STARS - Shot Map

LOC SHOT POS GALAXY CENTER
1co o 08 68 01
1c4 1 20 38 00
1c8 2 10 BO 01
1cc 4 40 49 00
D0 5 00 E4 01
14 6 80 92 00
D8 8 01 45 01
Inc 9 04 07 00
1E0 A 02 86 01

- 33 -

Shooting Stars

LoC

130
132
134
136
138
13A

13C
13E
140
142
144
146
148
14A
14C
14D
14E
150
152
154
155
157
158
15A
15C
15E
160
161
163
165
167
168
16A
16C
16E
170
172
174
176
178

OBJECT

04
24
20

EF

LABEL

START

SHOT

SEARCH

MATCH

FIX

CTEST

NMATCH

OPERATION

LDA
STA
STA
LDA
STA
BPL

LDA
STA

LDA
EOR
STA

IDA
EOR
STA
BPL
LDA
BNE
LDA
STA
BPL

#0
COUNT
UNIV
#1
CENTER
FIRST

#MAP

ADRLO

#1

ADRHI

#6
BUFFER+3
(ADRLO),Y
MATCH

#4
#36.
NMATCH

SEARCH

(ADRLO), Y
CTEST
UNIV
NMATCH

(ADRIO),Y
UNIV
UNIV

(ADRLO), Y
CENTER
CENTER
SHOWIT
CENTER
FIX

#53

DSP3

RUN

- 34 -

Initialize Shooting Stars
Clear Shot Counter

Clear Universe

Set Center Star

to be on

Go Map Universe to Display

Shot Evaluation
Set ADRLO/ADRHI to
point to Shot Map

Get current shot value
Test Shot Map match

Branch on match

Else set for next position
in Shot Map.

- Four bytes per entry

Test end of Shot Map

for Invalid Shot

Set to get next.

Continue Search

Set for next byte

Get POS from Shot Map
Test Center

Else mask to see if Star
exists. If not, invalid,
Set for next byte.

Get GALAXY

Exclusive OR to turn on/off
associated Stars.

Set for next byte.

Get Center value
Exclusive OR

Test if Center Exists
Okay if Center Exists
Invalid Shot. Show a
Question Mark in Shot
position of display.

Shooting Stars - continued

LoC

17A
17B
17C
17E
180
182

183

187

OBJECT LABEL

SHOWIT

49 FIRST

24 SECOND

92 THIRD

E7 TEST

E8 TEST2
Bl LOSE
B2 WIN

B7 STEP
04 03 RUN

OPERATION

SED
CLC
LDA
ADC
STA
CLD

LDA
AND
STA

LDA
BEQ
cMP
BNE
LDA
BEQ
LDA
BNE
LDA
BPL
LDA
STA
JMP

#01
COUNT
COUNT

#49
UNIV
DSP@

#24
UNIV

DSP1
CENTER
THIRD
DSP1
#40
DSP1

#92

UNIV
DSP2
DSP2

UNIV
TEST2
#FF
RUN
CENTER
WIN
CENTER
RUN
PARAM1
STEP
PARAM2
STEPNO
NXTSTP

- 35 -

Increment two digit
Decimal Shot Counter

Convert Universe to
Display Segment Values
First Position

Mask Second Position
to calculate Segments
Shift for actual
segment values

Get Center value
Test on/off

ON so add in the
Center segment value

Mask Third Position
and then shift into
correct positions

Test Empty Universe
Maybe

Test Win Position

No

Maybe, Win if Center
position is OFF

Empty or Win

Not if Center is ON
Empty Universe. LOSE.
Use PARAMI Step No.
WIN, Use PARAM2,
Save new Step No,

Program Module #3

LOC OBJECT STEP LABEL COMMAND PARAM1 PARAM2 PARAM3

Command Decoder

00 OOE00005 $ DECODE ALPIN BUFFER 1) 5
04 O06EODFO1 1 PACK BUFFER KEYVAL 1
08 0BC80006 2 FILL DISPIAY] 6
0C OADCDFO0 3 BRTABL CMDTBL KEYVAL DECODE
Tipsy
10 0BC80006 4 TIPSY FILL DISPIAY i} 6
14 09130007 5 PLUS BRCHAR GO - DECODE READY
1B 08050000 6 BRANCH PLUS
1C OBEOFF06 7 READY FILL BUFFER FF 6
20 07C2E004 8 UNPACK TENTHS BUFFER 4
24 04E00005 9 HEXOUT BUFFER [} 5
28 05140B00 A TIMER 20. BLANK
2C 0BC80004 B BLANK FILL DISPLAY ') 4
30 050A0D00 C TIMER 10. ACCEPT
34 0BCC4002 D ACCEPT FILL DISPIAY+: DASH 2
38 O0BDB2001 E FILL CHAR 20 1
3C 0BCO0004 F FILL THOUS] 4
40 02E60003 10 DECIN GUESS] 3
44 ODEOE604 11 MATCH BUFFER GUESS 4
48 08180000 12 BRANCH NO) [}
4C 0D52C101 13 YES MATCH ZERO TENS 1
50 08180000 14 BRANCH NO g]
54 07C2E402 15 UNPACK TENTHS BUFFER+4 2
58 04E00405 16 DECOUT BUFFER 4 5
5C 08050000 17 BRANCH PLUS
60 0BCC5302 18 NO FILL DISPLAY+4 w2 2
64 08050000 19 BRANCH PLUS

TIPSY uses FILL, BRCHAR and BRANCH to clear the display and wait for the
user to press GO to return to DECODE or any other key to start the test.
READY uses FILL and UNPACK to generate a four digit decimal number from
the system timer. HEXOUT and TIMER are used to display this number for
two seconds, FILL and TIMER are then used to blank the display and wait
for one second before accepting input. ACCEPT uses three FILL commands
to: display two dashes as a signal that the user may give his input, clear
any ''premature" character that may have been input, and clear the system
timer to be used as the ten second counter. The DECIN function is used to
input the four digit guess. MATCH evaluates the guess and skips no steps
if less than or greater than the actual value, where a BRANCH transfers
control to NO. If the guess is correct, then one step is skipped and
control goes to YES which uses another MATCH to determine if the amount

of time taken to answer exceeded ten seconds, If less than ten seconds
were used, then the time taken is displayed via UNPACK and DECOUT in
tenths of a second. If the answer was wrong or took too long, then FILL
is used to output two question marks to the display, Whether the answer
was correct and in time or not, control returns to PLUS and another run
can be started or control may be returned to DECODE.

- 36 -

Program Module #4
LOC OBJECT STEP TABEL COMMAND PARAM1 PARAM2 PARAM3

Command Decoder

00 O00E00005 @ DECODE ALPIN BUFFER) 5
04 O06EODFO1 1 PACK BUFFER KEYVAL 1
08 0BC80006 2 FILL DISPLAY) 6
0C O0ADCDFOO 3 BRTABL CMDTBL KEYVAL DECODE

Decimal/Hexidecimal Conversion

10 02E00500 4 DEC DECIN BUFFER 5 [/}
14 10EQOE606 5 DECHEX BUFFER DATA 6
18 080F0000 6 BRANCH OVRFLO

1C O7E6E006 7 SHOW UNPACK DATA BUFFER 6
20 04E00005 8 HEXOUT BUFFER [1] 5
24 09130BO4 9 WAIT BRCHAR GO HEX DEC
28 08090000 A BRANCH WAIT

2C 0lE00500 B HEX HEXIN BUFFER 5 /)
30 11EQE606 C HEXDEC BUFFER DATA 6
34 080F0000 D BRANCH OVRFLO

38 08070000 E BRANCH SHOW

3C 0BC85306 F OVRFLO FILL DISPLAY nan 6
40 08090000 10 BRANCH WAIT

DEC Decimal to Hexidecimal Conversion
HEX Hexidecimal to Decimal Conversion

DEC uses DECIN to input up to six digits in the shift mode, that is the
digits enter from the rightmost digit position and are shifted left one
position as each new digit is entered. The digit in the leftmost position
is lost if another shift occurs, DECHEX is a special routine for doing
most of the conversion work. It converts decimal values in BUFFER to
hexidecimal values in DATA, The number of digits to be converted can

be specified, and in this program is set to six. An overflow condition
can not occur when converting from decimal to hexidecimal, but since

the code for DECHEX and HEXDEC are basically identical and share most
routines, the DECHEX has an overflow return = skip § steps. The only
possible return from DECHEX is the normal return = skip 1 step. SHOW
uses UNPACK and HEXOUT to convert the result to separate characters and
output them to the display. WAIT uses BRCHAR and BRANCH to wait for the
user to select HEX to decimal conversion by pressing GO or DEC to hexi-
decimal conversion by pressing any other key,

HEX uses HEXIN to input up to six digits in the shift mode as in DEC above.
The special routine HEXDEC does the conversion. Since a six digit HEX
value may convert to a seven digit decimal value, the possibility of an
overflow occurring is real. An overflow will cause the next sequential
step to be executed, which is a BRANCH to OVRFLO. OVRFLO fills the
display with question marks and returns to WAIT. If there is no overflow,
then the decimal result is displayed by SHOW. The maximum HEX value that
can be handled is F423F, which equals 999999 decimal.

- 37 -

Hexidecimal Conversion Subroutine

LOC OBJECT LABEL OPERATION

130 A6 B2 HEXDEC IDX PARAM2 Get Pointer to Answer Buffer
132 A9 00 1DA {0 Clear three bytes or six
134 95 00 STA §,X digit positions

136 95 01 STA 1,X

138 95 02 STA 2,X

13A A6 Bl NEXT LDX PARAMI Get Pointer to Input Buffer
13¢ B5 00 DA 6,X Get next character

13E 30 OD BMI LZERO Test leading blanks

140 A6 B2 LDX PARAM2 Get Pointer to Answer Buffer
142 A0 11 1DY #HEX Test Hex to Dec or Dec To Hex
144 C4 BO CPY PARAM§ .

146 FO 10 BEQ HX Hex to Dec

148 20 75 01 JSR XTEN Dec to Hex Subroutine

14B BO 08 BCS OVRFLO Branch on Overflow

14D E6 B1l LZERO INC PARAM1 Bump Pointer

14F C6 B3 DEC PARAM3 Decrement No., Digits

150 DO E7 BNE NEXT Get Next

153 E6 B7 INC STEPNO Incr. Step No. for Normal
155 4C 04 03 OVRFLO JMP NXTSTP or Next Step for Overflow
158 C9 0A HX CMP #10. Hex to Dec. Convert from
15A 30 02 BMI OKAY Hex Character to BCD byte
15C 69 05 ADC #5

15E 20 70 01 QgAY JSR DSIXT Hex to Dec Subroutine

161 BO F2 BCS OVRFLO Branch on Overflow

163 90 E8 BCC LZERO Normal return

P R R R EEEEE R E R E R E R I I I R R N 3
Command Table Format

The Command Decoder uses a Command Table for its determination of which
Step to go to as a function of the Program name typed in. Only the first
two characters of a Program name are used. They are packed into a single
byte and then used in a BRTABL Function. Each entry in the Command Table
consists of two bytes: the packed character byte and the Step Number.

For example, SCLOCK or Set Clock has an entry of D2 04, where the D2 is
the packed representation of SC (S = D on keypad, C = 2) and 04 is the
Step Number of the start of the SCLOCK Program. The Command Table is
usually found starting at location AQ and is terminated by a @@ byte.

Function Table Format

The Interpreter looks up the absolute memory address of a Function in the
Function Table., This consists of two bytes of address, low order then
high order, for each function. The addresses are ordered by Function
number, the first being ALPIN,..., the last MATCH. The basic Function
Table starts at location 100. The Special Function Table follows the
same rules but starts at location 120.

= 38 =

Hexadecimal Conversion Subroutine

LOC
170
172
173

175

181

- Continued -

OBJECT

A0
F8
10

A0
D8
85
18
A9

10

03

0A

OPERATION

LDY
SED
BPL

LDY
CLD
STA
CIC
LDA
STA
STA
STA

LDA
ADC
STA
LDA
ADC
STA
LDA
ADC
STA
BCS
DEY
BMI
BNE
LDA
STA
STA
STA
LDA
BPL

LDA
STA
LDA
STA
LDA
STA
CLD
RTS

Set Counter for 16 loops
Set Decimal Mode

Set Counter for 10 loops
Set Binary Mode

Store New Value

Clear Carry

Clear Temporary bytes

Shift old value by

adding to itself the
required number of times
16 for Hex

10 for Decimal

Do addition for all three
bytes worth of data

Branch on Overflow
Decrement Loop Counter
When minus, then done

If no zero, keep looping
On zero, set up to add
in the new value by
clearing the old values
and then pick up the
new value and make final
loop.

Move result from Temp
to Result bytes

Clear Decimal Mode
Return

Program Module #5

LOC OBJECT

00E00005
06EODFO1
0BC80006
0ADCDF00

02E00500
06EOQE603
02E00500
06EQE903
OA5EDFO5
10E6E9E6
08120000

07E6E006
04E00005
09130006
080D0000
L1E6E9E6
08120000
080B0000
05021300
0BC80006
05021500
04E00005
09130004
08126000
1209110F
00000000

0913001C
081A0000
OBC83F06
0A9EC21D
0BC80006
07C1E006
06EQOE603
09130023
08210000
11C1E6E6
011E0000
07E6E006
04E00005
081A9000

WN =S

STEP LABEL COMMAND

PARAM1

Command Decoder

DECODE ALPIN
PACK
FILL
BRTABL

BUFFER
BUFFER

DISPLAY

CMDTBL

Add and Subtract

ADDSUB DECIN
NEW PACK
NEXT DECIN
PACK
BRTABL
ADD DECADD
BRANCH
SHOW UNPACK
DECOUT
WAIT BRCHAR
BRANCH
SUB DECSUB
BRANCH
BRANCH
FIASH TIMER
BLANK FILL
TIMER
WAIT2 DECOUT
BRCHAR
BRANCH
H+|l
0

BUFFER
BUFFER
BUFFER
BUFFER
ASTABL
AREG
FIASH

AREG
BUFFER
GO
WAIT
AREG
FLASH
SHOW

2
DISPLAY
2
BUFFER
GO
FLASH
ADD

Reaction Time Tester

REACT BRCHAR
BRANCH
START FILL
TEST BRTABL
HALT FILL
UNPACK
PACK
WAIT BRCHAR
BRANCH
STOP DECSUB
01
UNPACK
DECOUT
BRANCH

- 40 -

GO
REACT
DSPLAY
TTABLE
DSPIAY
TENS
BUFFER
GO
WAIT
TENS
HALT
AREG
BUFFER
REACT

PARAM2

KEYVAL

KEYVAL

3
AREG

BREG
KEYVAL
BREG

BUFFER
4
DECODE

BREG

BLANK
4
WAIT2
9
DECODE
ASTABL
|IDAII

DECODE
00

ll¢”
TENTHS
BLANK
BUFFER
AREG
DECODE

AREG
9
BUFFER
8
TTABLO

PARAM3

5
i
6
DECODE

W ws

NEW
AREG

NEXT

AREG

ADDSUB
ASTABH
SUB

TTABHI

Program Module # 5 Notes and Comments
ADDSUB Add and Subtract Decimal Numbers

ADDSUB permits a chained series of additions and/or subtractions to be
made with up to six digit decimal numbers. One major restriction to be
aware of: negative numbers and negative results are not permitted.
ADDSUB uses DECIN to input the first decimal value in the shift mode, that
is the current input digit appears in the rightmost display location and
all previously input digits are shifted one position to the left with the
leftmost digit being lost. The entire number may be erased by pressing
the PC key. PACK converts the data from decimal characters to binary
coded decimal BCD form two digits per byte. DECIN and PACK are then u
used to input the second value. BRTABL determines whether the operation
is to be an Add or Subtract as a function of the key used to terminate
the decimal input. A + terminator will cause a branch to the ADD Step.
A DA key will cause a branch to the SUB Step. Any other terminator will
cause the current input value to replace the old total and thereby start
a new chain operation, ADD uses a special function DECADD to add the
contents of the old total AREG to the new input value BREG and stores
the result in buffer AREG. If the total exceeds 999999., the capacity
of the display, then the next Step is executed which causes a BRANCH to
FIASH which flashes the last input value to indicate an overflow condition.
If there is no overflow, then one Step is skipped and control goes to
SHOW. SHOW uses UNPACK to convert from BCD form to separate characters.
DECOUT then converts the decimal characters to displayable form and
displays them. WAIT uses BRCHAR to wait for a GO to return to DECODE or
any other key to go to NEXT. SUB is handled in an identical fashion
except that the function DECSUB is called to process the subtraction
operation, and instead of overflow, the error will occur on the total
going negative, FLASH is just a combination of FILL, TIMER, DECOUT and
BRCHAR/BRANCH. The only real tricky part of ADDSUB is the location of
the ASTABL used by the BRTABL command at Step 8. Since the BRTABL
function permits the table to be anywhere in memory, it requires a Page
Zero pair of bytes to specify the start of the table, In ADDSUB this
byte pair is tacked on to the end -of the BRANCH function in Step 17.
Since BRANCH does not use Param2 or Param3 this is permissible. The
table itself is in the following Step and is terminated by the zero in
the next following Step.

REACT. Reaction Time Tester

REACT uses BRCHAR and BRANCH to wait until the user is ready to start a
test, FILL is used to put @ characters in all positions of the display.
Step TEST uses BRTABL to wait until the system clock has a @1 in the
TENTHS position, by using a table located as Step 24 which has as its
only valid value an @1, When TENTHS equals @1, control goes to Step HALT.
FILL clears the display. UNPACK and PACK combine to move the current
value of the system clock TENS, TENTHS, and MILLI into buffer AREG, in
effect saving the time at the start of the test., WAIT uses BRCHAR and
BRANCH to loop until a key is pressed. GO returns to the command decoder
and any other key stops the clock. The elapsed time is calculated by
subtracting the start time from the current time via DECSUB. UNPACK and
DECOUT display the reaction time accurate to the millisecond. BRANCH
resets to the start of REACT. Since there can be no negative result from
the DECSUB, there can be no possibility of executing Step 24, the table.

- 41 -

DECIMAL ADD and HEXIDECIMAL ADD

LOC

130
131
132

134
136
138
13A
13C
13E
140
142
144
146
147
149

14A
14C
14E

OBJECT

F8
18
AQ

02
B7

LABEL

DECADD
HEXADD

NEXT

04 03 RETURN

OPERATION

SED
CIC
LDY

LDX
LDA
LDX
ADC
LDX
STA
DEC
DEC
DEC
DEY
BNE
CLD

BCS
INC
JMP

RETURN
STEPNO
NXTSTP

Set Decimal Mode

Entry for Hex Add
Service three bytes
Get A buffer digit

Add to B buffer digit
Store in C buffer
Decrement buffer pointers
Decrement byte counter
Continue if not zero
Clear Decimal Mode
Test Carry

Skip one Step on Normal
Next Step on Overflow

DECIMAL SUBSTRACT and HEXIDECIMAL SUBSTRACT

LOC

151
152
153

155
157
159
15B
15D
15F
161
163
165
167
168
16A

16B
16D
16F

OBJECT

F8
38
A0

EB

02
B7

LABEL

DECSUB
HEXSUB

NEXT

OPERATION

SED
SEC
LDY

LDX
LDA
LDX
SBC
LDX
STA
DEC
DEC
DEC
DEY
BNE
CLD

BCC
INC

04 03 RETURN JMP

RETURN
STEPNO
NXTSTP

= 42 =

Set Decimal Mode

Entry for Hex Subtract
Service three bytes

Get A buffer digit
Subtract B buffer digit
Store in C buffer
Decrement buffer pointers
Decrement byte counter
Continue if not zero
Clear Decimal Mode

Test Borrow

Skip one Step if no borrow
Next Step if borrow

PLEASE Function Summary

617/256-3649 Where to call if a real problem occurs.

Code Command Paraml Param2 Param3 Page
(11} ALPIN Buffer Start End 14
@1 HEXIN Address Display Display 14
g2 DECIN Page Zero Position Position 14
93 ALPOUT Buffer Start End 20
@4 HEXOUT Address Display Display 20
@b DECOUT Page Zero Position Position 20
@5 TIMER Delay Time Step Number 21
@6 PACK Source Destination Number of 22
@47 UNPACK Buffer Buffer Bytes 23
Page Zero Page Zero
%8 BRANCH Step Number 24
@9 BRCHAR Character to Step Number Step Number 24
Match on if Match if Non-match
@A BRTABL Table Address Value Address Non-Match Step 25
Indirect Page Zero Number
@B FILL Memory Address Fill Value Number of Bytes 26
gc COMPAR First String Second String Number of 26
@D MATCH Page Zero Page Zero Bytes in String 26
. S
Some Important Numbers ‘1
(¢@PA¢ PLEASE Command Table - two bytes per entry
@¢@¢B@ Current Command Function Number
$¥B1 Current Paraml
@@B2 Current Param2
@¢@B3 Current Param3
@@EF KIM - Program Counter - Low Order Byte
" §9F$ KIM - Program Counter - High Order Byte
@@F1 KIM - Status Register
@@F2 KIM - Stack Pointer
@@F3 KIM - Accumulator
@@F4 KIM - Y-Index Register
@@F5 KIM - X-Index Register
@#10¢ PLEASE Standard Function Table
#12¢ PLEASE Special Functions Table

